

extension.psu.edu

Penn State Feed Assessment

DELIVERING EDUCATION YOU CAN TRUST

Meet the Presenter

Rainey Rosemond

- Berks County
- Nutrition, feed management, crop quality

TMR Assessment Process

Data Collection – On Farm

Call us!

- Particle size
- Sample collection for nutrient analysis
- Production data collection
- Feeding protocols

_	1	_
	\odot	_
		•

Data Analysis

- Forage analysis lab
- Dry matter intake
- Feed efficiency
- Production efficiency

Recommendations

 Develop personalized recommendations for on-farm feed management and ration program

Follow Up

 Sit down conversation with farmers where results and recommendations are presented. Allows time for conversation on identified opportunities.

Feed Efficiency – What is it? How does it benefit the environment?

Feed Efficiency = Energy Corrected Milk + Dry Matter Intake

Environmental Impact

- Maximized production
- Maximized feed utilization
- Reduced waste parameters

Milk Yield

DATE	COW NUMBER	BULK TANK	MILK COW AVG	Milk Fat %	Milk Protein %	MILK FAT LBS	MILK PROTEIN LBS	TOTAL COMPONENT LBS	MUN	<8 mg/c
6/13/2022	41.00	6457.00	78.74	3.65	2.98	2.87	2.35	5.22	11.7	8-10 mg/d
6/11/2022	44.00	6472.00	73.55	3.71	2.9	2.73	2.13	4.86	11.7	8-10 mg/c
6/9/2022	44.00	6676.00	75.86	3.57	3.07	2.71	2.33	5.04	11.7	12-14

Benchmarks: 2x Milkir	ng
Milk Yield Ibs	75
Total Components Ibs	5.5
SCC	<200,000
MUN	Table 1

Table 1. Guideline for interpreting whole herd MUN values (bulk tank milk).

MUN	Comment*	Suggestions*
<8 mg/dl	Low	Consider MUN as too low if production is less than 70 lbs. and the herd rations are not formulated for low protein (i.e. 16%). For TMR-fed herds, send out an analysis to confirm protein level. For component-fed herds and TMR-fed herds, use DHIA to evaluate individual cows and groups of cows. Evaluate protein and carbohydrate sources.
<8 mg/dl	Okay	If production is greater than 70 lbs, and the ration is formulated for low protein and well balanced for protein and carbohydrates, then the MUN may be okay.
8-10 mg/dl	Slightly low	If the ration is not formulated for low protein and milk production is less than 70 lbs, then there may be some feed management problems and/or ration program issues to address.
8-10 mg/dl	Okay	If production is greater than 70 lbs, and the ration is formulated for low protein and well balanced for protein and carbohydrates, then the MUN may be okay.
12-14 mg/dl	Slightly high	If the ration is formulated for low protein and there are no feed management issues, then closely evaluate the protein fractions (especially soluble protein) and the level and sources of nonstructural carbohydrates.
12-14 mg/dl	Okay	If the ration is formulated for high levels of protein (>17.0%) and there is only one cereal grain source being fed, then the MUN level may be okay. However, there may be opportunities to lower the protein level to reduce N excretion.
>14 mg/dl	High	For TMR-fed herds, send out for analysis to confirm protein level. For component-fed herds and TMR-fed herds, use DHIA to evaluate individual cows and groups of cows. Evaluate protein and carbohydrate sources. Evaluate feed management practices, e.g. sorting.
>14 mg/dl	Not recommended	If the ration is formulated for high levels of protein (>17.0%), high levels of degradable protein and/or inadequate starch or sugar sources, then N is not being efficiently used by the animal and excessive levels of N are being excreted.

*Comments and suggestions are based on field observations and do not address every possible explanation for the MUN level being observed.

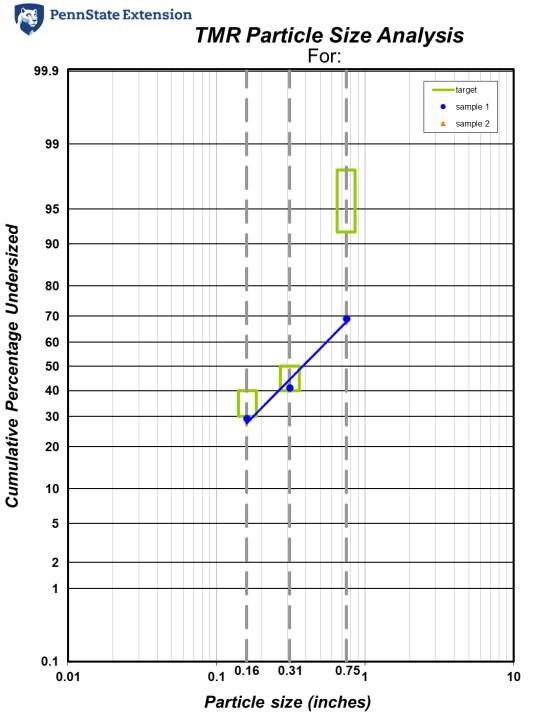
Feed Intake

PEN	NOTE	АМ	РМ	SUM	COW #	TOTAL REFUSALS	PER COW REFUSALS	-	AS-FED FEED INTAKE	calculated from the calculated by the as-fed Feed 3-day average intake by cow multiplied by for an the TMR dry matter from avera the lab 180 [calculated by the as-fed	GOAL : Dry Matter Feed efficiency for an operation
1	High	2200	2000	4200	46	400	8.7	3600	82.61		averaging 170- 180 DIM should	
DMI	MILK	EMC	FE									range from 1.45- 1.70
43.19	73.2	75.6	1.75							FEED EFFICIENCY is defined as the	DRY MATTER FEED EFFICIENCY was calculated	
AVE	RAGI	E ECN	/I FE]	ED E	FFI	CIENCY:	1.75				by taking the milk by cow and dividing it by the dry matter intake	

Mixing Order – Opportunity in Order

Ingredient Order	Ingredient	Time Added
1	Roasted soybeans	3:51
2	HM ear corn	
3	Concentrate mix	
4	Alfalfa/mixed grass baleage	
5	Corn silage	4:16
6		
7		
8		
9	Delivered to the bunk	4:36
	Total Time	45 MIN

Suggested Mixing Order	
Alfalfa/mixed grass baleage	
Concentrate Mix, HM Corn, Suppl Premixes	lements,
Roasted Soybeans	
Corn Silage	
Standing Mixing Time:	
Baleage + Con + Pro: 20 to 25 m Add in corn silage: 5 min	ninutes

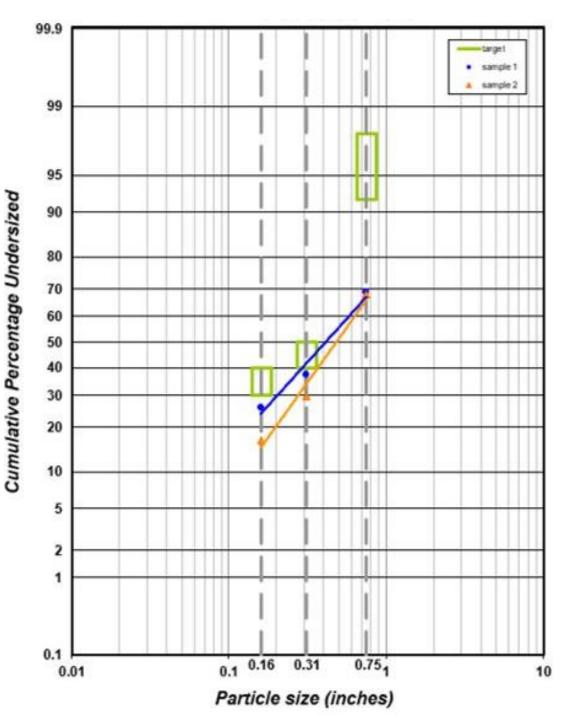

Mixing Order – Why

PSPS TMR Ration -Longer on Top

TMR Particle Size in ration

- Extremely long particle size
- ~31% of the ration remaining in the top sieve
- Smaller particle sizes are limited
- Potential sorting of longer
 particles
- Under 20% for baleage fed herds

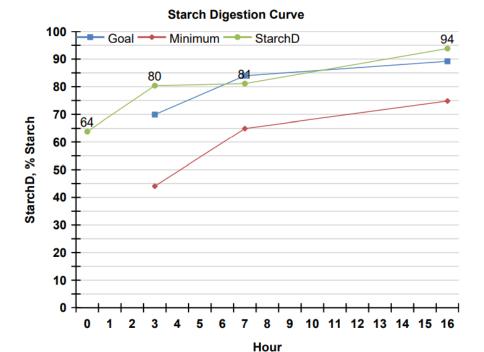
PSPS TMR



Large portion of the ration is high on top sieve

• PSPS is at 3% on top sieve

PSPS TMR Refusals – Sorting for Smaller


- Blue line = Refusals
- Orange line = TMR
- Heavy sorting for smaller particles
- Some consumption of the longer particles, but not enough to balance sorting for smaller particles
- Further impacts on rumen health, hoof health, animal comfort, and fat percentage

Measurement	Formulated (%DM)	Tested (%DM)	Difference	Percent Change	DMI	Intake Formulated	DMI Avg Actual	Intake % BW (1425lbs) Formulated	Intake % BW (1425lbs) Actual		
Dry Matter	51.9	56.88	4.98	9.595375723		50.68	52.58716981	0.035564912	0.036903277		
Net Energy Lactation (Mcal/lb)	0.77	0.767	-0.003	-0.38961039		39.0236					
ME (Mcal/lb)	1.19		-1.19			60.3092	0				
Crude Protein	16.65	16.75	0.1	0.600600601							
Soluble Protein (%CP)	37.65	52.22	14.57	38.69853918							
ADF	18.65	19.08	0.43	2.305630027			Actual AF intake				
NDF	27.03	30.9	3.87	14.31742508			92.45				
Lignin		2.81	2.81	#DIV/0!			Changes in DM of mixed ingredients – especially forages - will change their weight				
Starch	30.47	25.11	-5.36	-17.59107319	•	Changes in					
Ether Extract	3.28	3.37	0.09	2.743902439		especially for					
Calcium	0.81	0.69	-0.12	-14.81481481		1 2	0	0			
Phosphorous	0.33	0.35	0.02	6.060606061		, 0	9	sh less and require			
Magnesium	0.3	0.26	-0.04	-13.33333333		"more" to b	h				
Potassium	1.26	1.37	0.11	8.73015873		weights, wh	ile "over me	eting" the nu	trient		
Sulfur	0.2	0.2	0	0		U					
Sodium	0.45	0.36	-0.09	-20		requiremen					
Chloride		0.52	0.52	#DIV/0!	•	Opportunity	[,] in forage st	orage and sta	ability		
Iron (PPM)		458.81	458.81	#DIV/0!	•	Frequency	of DM testing	_ ۲	-		
Manganese (PPM)		64.32	64.32	#DIV/0!		. ,		5			
Zinc (PPM)		62.67	62.67	#DIV/0!	•	Calibrated s	scales				
Copper (PPM)		16.97	16.97	#DIV/0!							

Ration Nutrient Analysis -Starch Digestibility

- From farm with sorting for longer particles
- Determining point of starch is difficult since it is a TMR sample and not the starch source alone
 - $_{\circ}\,$ Fecal sampling for starch DM

Forage NDF as % of body weight ¹	Intake level
0.75% ²	Minimum if ration provides 1.30 to 1.40% total NDF by use of byproduct feeds.
0.85% ²	Minimum if ration provides 1.00 to 1.20% total NDF by use of grains or starchy feeds.
0.90%	Moderately low
0.95%	Average
1.00%	Moderately high
1.10%	Maximum
forage NDF intake paramete	hould range between 1.40% and 2.40% of body weight, regardless of ers.

²Higher minimum may be necessary if forage is chopped too fine.

Additional Memo

Additional Memo

peNdf = 19.53% of DM, 69.50% of Ndf

peNdf = 16.02% of DM, 60.43% of Ndf

Ration Nutrient Analysis -NDF

- peNDF is low and/or insufficient depending on what cows are actually eating
- Minimum is 19%
- Minimum forage intake 1.4% BW
- No less than 40 to 45% forage in total ration DM
- Impacts on animal health long term

Whole Farm Assessment

Other management factors that influence feed efficiency

DELIVERING EDUCATION YOU CAN TRUST

Management vs. Nutrition

- 47 herds with similar genetics were fed the same TMR
- Average milk yield = 65 lb/d
 Range: 44 to 75 lb/d
- Non-dietary factors accounted for 56% of variation in milk yield
 - Feeding for refusals
 - Feed push-ups
 - Stalls per cow/comfortable resting surface
 - Overall management

Factors Highly Associated with Welfare and Productivity

- Comfortable, clean beds
- Adequate feed and water
- Access to exercise
- Relationship with stockperson

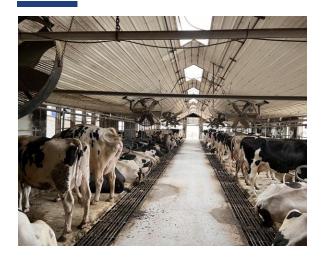
Cow Comfort

- Pressure wounds
- 3 to 4 inches of bedding on top of mattress
 - Add more towards front of stall
- Goal: trim at dry-off then again at 100 days in milk
- Goal of trimming is to provide a flat surface for weight-bearing with the appropriate angle

Bunk Cleanliness

- Remove caked-on, old feed around bunk
- Heating at the bunk during hot months
- Faster spoilage or odors turn cows away from eating

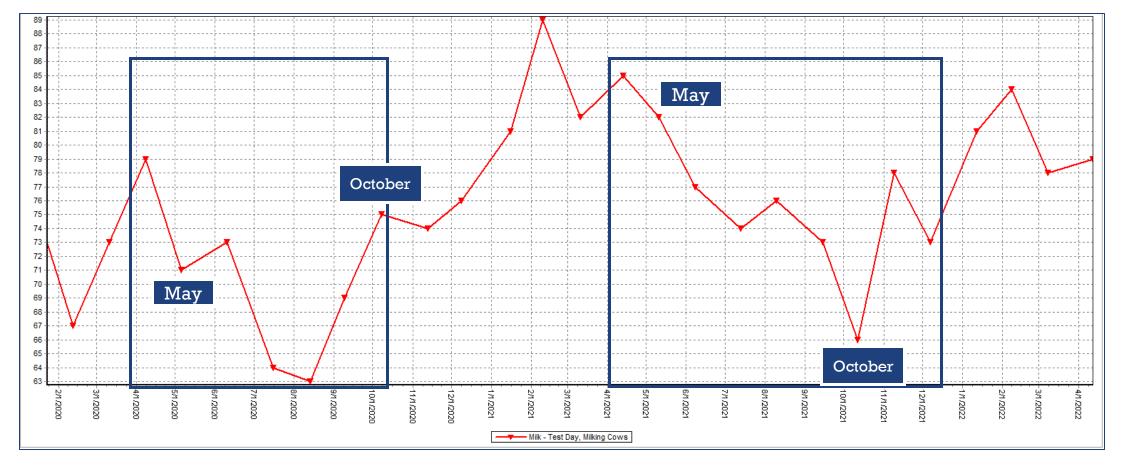
Photo From Harbor Freight Online Website



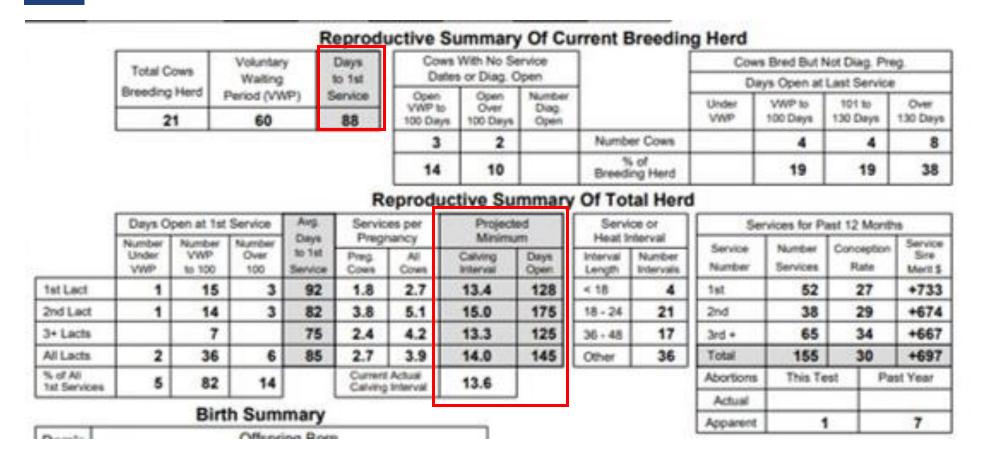
Water Cleanliness

- Milk is 80% water
- Water functions in thermoregulation critical for cows to be hydrated, especially during hot months
- Remove debris frequently
- Clean waterers bi-weekly
- Use a weak chlorine solution to clean with and rise well
- Slop guard
- Pasture

Heat Abatement

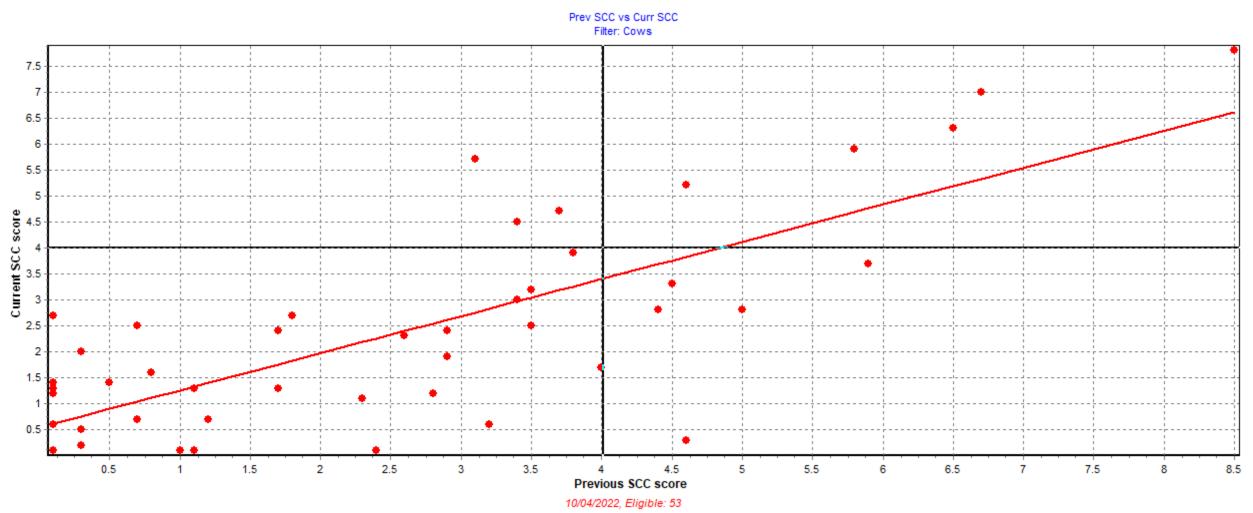


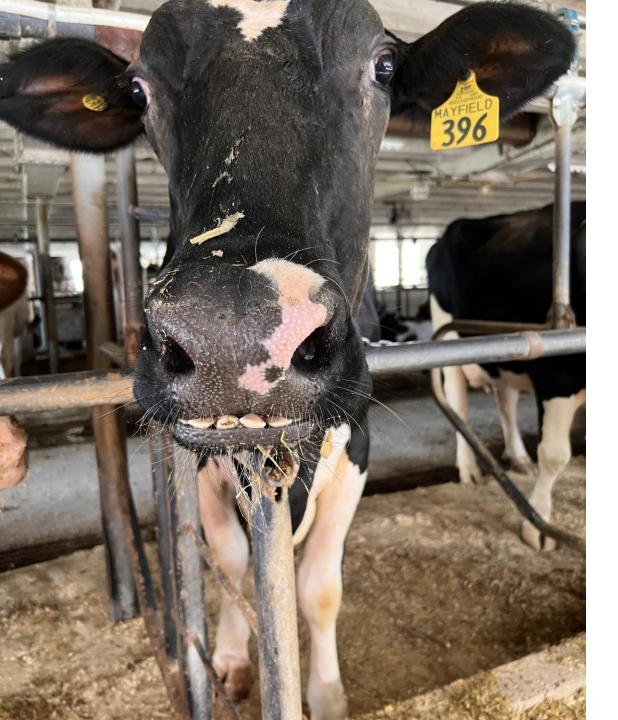
- Can see signs of heat stress in records
 - Lag time
- Circulating fans throughout barn
- Water quality and availability
- Pasture– dry cows and heifers get heat stressed too!



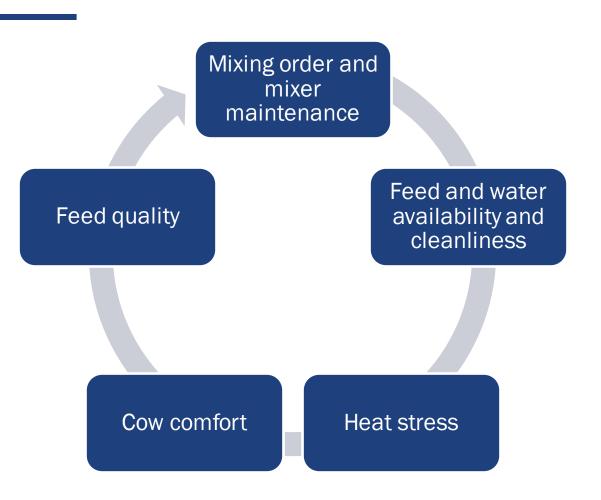
Production Evaluation – Heat Abatement

Breeding Management




Benchmarks

- Calving interval: <13.5 mos
- Average days open: ≤ 120 days
- Heat detection rate: ≥ 65%
- Days to first service: < 80 days



Milk Quality: Previous SCC vs. Current SCC

Summary

Contact Information

Rainey Rosemond

Extension Dairy Educator, Berks County

919-428-6998 rfr49@psu.edu

Carly Becker

Extension Dairy Educator, Lancaster County

859-640-7489 cab7033@psu.edu

Questions?

The University is committed to equal access to programs, facilities, admission, and employment for all persons. It is the policy of the University to maintain an environment free of harassment and free of discrimination against any person because of age, race, color, ancestry, national origin, religion, creed, service in the uniformed services (as defined in state and federal law), veteran status, sex, sexual orientation, marital or family status, pregnancy, pregnancy-related conditions, physical or mental disability, gender, perceived gender, gender identity, genetic information, or political ideas. Discriminatory conduct and harassment, as well as sexual misconduct and relationship violence, violates the dignity of individuals, impedes the realization of the University's educational mission, and will not be tolerated. Direct all inquiries regarding the nondiscrimination policy to the Affirmative Action Office, The Pennsylvania State University, 328 Boucke Building, University Park, PA 16802-5901, Email: aao@psu.edu, Tel 814-863-0471.

This presentation, including its text, graphics, and images ("Content"), is for educational purposes only; it is not intended to be a substitute for veterinary medical advice, diagnosis, or treatment.

Always seek the advice of a licensed doctor of veterinary medicine or other licensed certified veterinary medical professional with any questions you may have regarding a veterinary medical condition or symptom.

